Lecture 38: Dec 8

Last time

• Expectation

Today

- Course Evaluations (21/48)
- Final exam starts TODAY!
- Central Limit Theorem

Covariance and Correlation Let X and Y be two random variables with respective means μ_X , μ_Y and variances $\sigma_X^2 > 0$ and $\sigma_Y^2 > 0$, all assumed to exist.

• The *covariance* of X and Y is

$$
Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = \sigma_{XY}
$$

• The *correlation* between X and Y is

$$
Cor(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}
$$

also written as

$$
\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} = E\left[\left(\frac{X - \mu_X}{\sigma_X} \right) \left(\frac{Y - \mu_Y}{\sigma_Y} \right) \right]
$$

Properties Let c be a constant:

\n- 1.
$$
Cov(X, X) = Var(X)
$$
, $Cor(X, X) = 1$
\n- 2. $Cov(X, Y) = Cov(Y, X)$, $Cor(X, Y) = Cor(Y, X)$
\n- 3. $Cov(X, c) = 0$, $Cor(X, c) = 0$
\n- 4. $Cov(X, Y) = E(XY) - E(X)E(Y)$
\n

5. Let $X_c = X - \mu_X$, $Y_c = Y - \mu_Y$. Then

$$
Cov(X, Y) = Cov(X_c, Y_c) = E(X_cY_c)
$$

$$
Cor(X, Y) = Cor(X_c, Y_c)
$$

6. Let
$$
\tilde{X} = (X - \mu_X)/\sigma_X
$$
, $\tilde{Y} = (Y - \mu_Y)/\sigma_Y$. Then,

$$
Cor(X, Y) = Cor(\tilde{X}, \tilde{Y}) = Cov(\tilde{X}, \tilde{Y}) = E(\tilde{X}\tilde{Y})
$$

Independent vs. Uncorrelated

• X and Y are called *uncorrelated* iff

 $Cov(X, Y) = 0$ or equivalently $\rho_{XY} = 0$

- If X and Y are independent and $Cov(X, Y)$ exists, then $Cov(X, Y) = 0$.
- If X and Y are uncorrelated, this does **not** imply that they are independent.

Example $X \sim U[-1, 1], Y = X^2$. Then $Cov(X, Y) = 0$ but X, Y are not independent.

Correlation coefficient For any random variables X and Y ,

- 1. $-1 \leq \rho_{XY} \leq 1$
- 2. $|\rho_{XY}| = 1$ if and only if $\exists a \neq 0$ and b such that

$$
\Pr(Y = aX + b) = 1.
$$

if $\rho_{XY} = 1$ then $a > 0$, and if $\rho_{XY} = -1$, then $a < 0$.

proof: Let $\tilde{X} = (X - \mu_X)/\sigma_X$, $\tilde{Y} = (Y - \mu_Y)/\sigma_Y$. Then $Cor(X, Y) = E(\tilde{X}\tilde{Y})$, 1. $0 \leqslant E(\tilde{X} - \tilde{Y})^2 = 1 + 1 - 2E(\tilde{X}\tilde{Y}) \Rightarrow E(\tilde{X}\tilde{Y}) \leqslant 1$ $0 \leqslant E(\tilde{X} + \tilde{Y})^2 = 1 + 1 + 2E(\tilde{X}\tilde{Y}) \Rightarrow -1 \leqslant E(\tilde{X}\tilde{Y})$

2.

$$
\rho_{XY} = 1 \iff \Pr(\tilde{Y} = \tilde{X}) = 1 \Rightarrow a > 0
$$

$$
\rho_{XY} = -1 \iff \Pr(\tilde{Y} = -\tilde{X}) = 1 \Rightarrow a < 0
$$

Random Samples

Definition The random variables X_1, \ldots, X_n are called a *random sample of size n from* the population $f(x)$ if X_1, \ldots, X_n are mutually independent and identically distributed (iid) random variables with the same pdf or pmf $f(x)$.

If X_1, \ldots, X_n are iid, then their joint pdf or pmf is

$$
f(x_1,...,x_n) = f(x_1)f(x_2)...f(x_n) = \prod_{j=1}^n f(x_j)
$$

Statistics Let X_1, \ldots, X_n be a random sample and let $T(x_1, \ldots, x_n)$ be a function defined on \mathbb{R}^n . Then the random variable $Y = T(X_1, \ldots, X_n)$ is called a *statistic*. The probability distribution of Y is called the *sampling distribution* of Y .

Note: T is only a function of (x_1, \ldots, x_n) , no parameters.

Examples

sample mean
$$
\bar{X} = \frac{1}{n} \sum_{j=1}^{n} X_j
$$

sample variance $S^2 = \frac{1}{n-1} \sum_{j=1}^{n} (X_j - \bar{X})^2$
sample standard deviation $S = \sqrt{S^2}$
minimum $X_{(1)} = \min_{1 \le i \le n} X_i$

Properties Let x_1, \ldots, x_n be *n* numbers and define

$$
\bar{x} = \frac{1}{n} \sum_{j=1}^{n} x_j
$$
, $s^2 = \frac{1}{n-1} \sum_{j=1}^{n} (x_j - \bar{x})^2$

Then

$$
\min_{a} \sum_{j=1}^{n} (x_j - a)^2 = \sum_{j=1}^{n} (x_j - \bar{x})^2
$$

$$
(n-1)s^2 = \sum_{j=1}^{n} (x_j - \bar{x})^2 = \sum_{j=1}^{n} x_j^2 - n\bar{x}^2
$$

Residuals Lemma: Let X_1, \ldots, X_n be a random sample from a population with mean μ and variance σ^2 . Define the residuals $R_i = X_i - \overline{X}$. Then

$$
E(R_i) = 0, \quad Var(R_i) = \frac{n-1}{n}\sigma^2
$$

\n
$$
Cov(R_i, \bar{X}) = 0, \quad Cov(R_i, R_j) = -\sigma^2/n \text{ if } i \neq j
$$

Theorem Let X_1, \ldots, X_n be a random sample from a population with mgf $M_X(t)$. Then the mgf of the sample mean is

$$
M_{\bar{X}}(t) = [M_X(t/n)]^n
$$

Convergence

Convergence in Probability A sequence of random variables X_1, \ldots, X_n converges in probability to a random variable X , denoted

$$
X_n \stackrel{p}{\to} X
$$

if for every $\epsilon > 0$,

$$
\lim_{n \to \infty} \Pr(|X_n - X| < \epsilon) = 1
$$

or equivalently

$$
\lim_{n \to \infty} \Pr(|X_n - X| > \epsilon) = 0
$$

In other words, X_n is more and more likely to be close to X , or less and less likely to be far from X .

Example Let $X_n = X + \epsilon_n$, where $\epsilon_n \sim N(0, 1/n)$ and X is an arbitrary random variable. Then, as $n \to \infty$,

 $X_n \stackrel{p}{\to} X$

Weak law of large numbers (WLLN) Let Y_1, \ldots, Y_n be iid with common mean μ and variance σ^2 . Then, as $n \to \infty$,

$$
\bar{Y}_n = \frac{1}{n} \sum_{j=1} Y_j \xrightarrow{p} \mu
$$

Proof:

The proof is quite simple, being a straightforward application of Chebychev's Inequality. We have, for every $\epsilon > 0$,

$$
\Pr(|\bar{Y}_n - \mu| \ge \epsilon) = \Pr(|\bar{Y}_n - \mu|^2 \ge \epsilon^2) \le \frac{E(\bar{Y} - \mu)^2}{\epsilon^2} = \frac{Var(\bar{Y})}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \to 0 \text{ as } n \to \infty
$$

Convergence in Distribution A sequence of random variables X_1, \ldots, X_n converges in distribution to a random variable X , denoted

$$
X_N \stackrel{d}{\to} X
$$

if

$$
\lim_{n \to \infty} F_{X_n}(x) = F_X(x)
$$

This is also called convergence in law or weak convergence. In other words, the distribution of X_n is closer and closer to the distribution of X.

Relation between "in distribution" and "in probability" Theorem:

1. Convergence in probability implies convergence in distribution:

$$
X_n \xrightarrow{p} X \Rightarrow X_n \xrightarrow{d} X
$$

2. Suppose $X_n \stackrel{d}{\rightarrow} X$ where X has a degenerate distribution, i.e. $Pr\{X = a\} = 1$ for some $a \in \mathbb{R}$. Then,

$$
X_n \xrightarrow{d} a \Rightarrow X_n \xrightarrow{p} a
$$

Convergence in Distribution via Convergence of Mgfs Theorem: Suppose the mgf $M_n(t)$ of Y_n exists for $|t| < h$, and the mgf $M(t)$ of Y exists for $|t| < h_1 < h$. Then,

$$
Y_n \stackrel{d}{\to} Y \iff \lim_{n \to \infty} M_n(t) = M(t), \quad |t| < h_1
$$

Example Let $X_{\lambda} \sim Poisson(\lambda)$. Then, as $\lambda \to \infty$,

$$
\frac{X_{\lambda} - \lambda}{\lambda} \xrightarrow{p} 0
$$

$$
\frac{X_{\lambda} - \lambda}{\sqrt{\lambda}} \xrightarrow{d} N(0, 1)
$$

Central Limit Theorem Let X_1, X_2, \ldots, X_n be a sequence of iid random variables whose mgfs exist in a neighborhood of 0 (that is, $M_{X_i}(t)$ exists for $|t| < h$, for some positive $h > 0$). Let $EX_i = \mu$ and $Var(X_i) = \sigma^2 > 0$. (Both μ and σ^2 are finite since the mgf exists) Define $\bar{X}_n = \frac{1}{n}$ n $\frac{n}{n}$ $i=1$ X_i . Let $G_n(x)$ denote the cdf of $\sqrt{n}(\bar{X}_n - \mu)/\sigma$. Then, for any $x, -\infty < x < \infty$,

$$
\lim_{n \to \infty} G_n(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy;
$$

that is, $\sqrt{n}(\bar{X}_n - \mu)/\sigma$ has a limiting standard normal distribution, in other words, $\sqrt{n}(\bar{X}_n - \mu)/\sigma$ μ)/ $\sigma \stackrel{d}{\rightarrow} N(0, 1)$

Proof:

Define $Y_i = (X_i - \mu)/\sigma$, and let $M_Y(t)$ denote the common mgf of Y_i s, which exists for $|t| < \sigma h$ and $M_Y(t) = M_{\frac{1}{\sigma}X_i - \mu/\sigma}(t) = e^{-\frac{t\mu}{\sigma}t}M_X(\frac{t}{\sigma})$ $\frac{t}{\sigma}$). Since

$$
\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} = \frac{1}{\sqrt{n}} \sum_{i=1}^n Y_i,
$$

we have,

$$
M_{\sqrt{n}(\bar{X}_n - \mu)/\sigma}(t) = M_{\sum_{i=1}^n Y_i/\sqrt{n}}(t)
$$

=
$$
M_{\sum_{i=1}^n Y_i}(t/\sqrt{n})
$$

=
$$
[M_Y(t/\sqrt{n})]^n
$$

.

We now expand $M_Y(t/\sqrt{n})$ in a Taylor series (power series) around 0.

$$
M_Y(\frac{t}{\sqrt{n}}) = \sum_{k=0}^{\infty} M_Y^{(k)}(0) \frac{(t/\sqrt{n})^k}{k!},
$$

where $M_Y^{(k)}$ $Y(Y^{(k)}(0)) = (d^k/dt^k) M_Y(t)|_{t=0}$. Since the mgfs exist for $|t| < h$, the power series expansion is valid if $t < \sqrt{n}\sigma h$.

Using the facts that $M_Y^{(0)} = 1$, $M_Y^{(1)} = 0$, and $M_Y^{(2)} = 1$ (by construction, the mean and variance of Y are 0 and 1), we have

$$
M_Y(\frac{t}{\sqrt{n}}) = 1 + \frac{(t/\sqrt{n})^2}{2!} + R_Y(\frac{t}{\sqrt{n}}),
$$

where R_Y is the remainder term in the Taylor expansion such that

$$
\lim_{n \to \infty} \frac{R_Y(t/\sqrt{n})}{(t/\sqrt{n})^2} = 0.
$$

Therefore, for any fixed *t*, we can write
\n
$$
\lim_{n \to \infty} \left[M_Y(\frac{t}{\sqrt{n}}) \right]^n = \lim_{n \to \infty} \left[1 + \frac{(t/\sqrt{n})^2}{2!} + R_Y(\frac{t}{\sqrt{n}}) \right]^n
$$
\n
$$
= \lim_{n \to \infty} \left[1 + \frac{1}{n} \left(\frac{t^2}{2} + nR_Y(\frac{t}{\sqrt{n}}) \right) \right]^n
$$
\n
$$
= e^{t^2/2}
$$